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Abstract: We prove that the finite gauge transformation of the Ramond sector of

the modified cubic superstring field theory is ill-defined due to collisions of picture

changing operators.

Despite this problem we study to what extent could a bijective classical correspondence

between this theory and the (presumably consistent) non-polynomial theory exist. We find

that the classical equivalence between these two theories can almost be extended to the Ra-

mond sector: We construct mappings between the string fields (NS and Ramond, including

Chan-Paton factors and the various GSO sectors) of the two theories that send solutions to

solutions in a way that respects the linearized gauge symmetries in both sides and keeps the

action of the solutions invariant. The perturbative spectrum around equivalent solutions

is also isomorphic.

The problem with the cubic theory implies that the correspondence of the linearized

gauge symmetries cannot be extended to a correspondence of the finite gauge symmetries.

Hence, our equivalence is only formal, since it relates a consistent theory to an inconsistent

one. Nonetheless, we believe that the fact that the equivalence formally works suggests

that a consistent modification of the cubic theory exists. We construct a theory that can

be considered as a first step towards a consistent RNS cubic theory.
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1 Introduction

There are two familiar versions of (RNS covariant open) superstring field theory.1 The

first to be constructed is the modified cubic theory of [2–4], in which the NS string field

carries zero picture number. This is an improved version of Witten’s theory [5], in which

collisions of picture changing operators destroy the gauge symmetry and invaliadate the

evaluation of scattering amplitudes [6]. Despite correcting the problems of collisions of

picture changing operators, some difficulties still remain. Most familiar is the criticism

against the appearance of the picture changing operator Y−2 in the definition of this theory,

on the ground that this operator possesses a non-trivial kernel. It is not clear to us if this

actually poses a problem, since one can claim that the problematic string fields should not

be considered as legitimate ones.2 However, there is also a genuine problem with the cubic

formulation: Its Ramond sector is inconsistent, since its linearized gauge transformations

cannot be exponentiate to give finite gauge transformations, due to (again) collisions of

picture changing operators. This fact was unnoticed so far. We prove it in section 2.

The second formulation is the non-polynomial theory, constructed by Berkovits [8].

This theory lives in the large Hilbert space of the fermionized RNS superghosts [9]. The

1See [1] for a review of recent developments in string field theory. More detailed background on the

construction of superstring field theories can be found in section 8 therein.
2See the companion paper [7] for a more detailed discussions on this subject.
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physical degrees of freedom behave like ξ times the usual RNS degrees of freedom. Hence,

the NS string field carries ghost number zero (instead of one) and picture number zero

(instead of the “natural” minus one picture). A novel gauge symmetry is introduced in

order to reduce the degrees of freedom by half, that is, in order to obtain the same amount

of degrees of freedom one has in the small Hilbert space.

It was recently discovered that a mapping exists between these two theories, sending

solutions of the one to solutions of the other, such that gauge orbits are sent bijectively

to gauge orbits [10]. The cohomologies around solutions and the actions of solutions are

invariant under this mappings. Moreover, it was also shown in [10] that this formalism

can be extended to include also the NS− sectors of both formulations [11, 12]. It was

concluded that the theories are classically equivalent.

It should be noted that (in one direction) the mapping is performed by a mid-point

insertion on top of the field of the cubic theory. Furthermore, a regularization had to be

employed for the evaluation of the action under the mapping and while the regularization

was not explicitly constructed, it was explained what should its properties be (symmetry

arguments). This state of affairs brings about two possible points of view for interpreting

the results of [10]. One option is that the mid-point insertion is a singular limit of another

family of mappings, which are more complicated but regular. If this is the case then the

theories are genuinely equivalent. The other option is that the cubic theory should be

thought of as a singular gauge limit of the non-polynomial theory. Being a singular limit

does not imply that it is wrong. It only implies that one has to use some care when working

with it. For example, it was realised [13–15] that Schnabl’s gauge [16] is a singular limit

of a regular family of “linear b-gauges”. Nonetheless, it was also shown that it is possible

to regularize expressions in this gauge and get a reliable final result.

There are at least three obvious matters that should be dealt with regarding the

equivalence of the two theories. We already mentioned the somewhat singular nature of

the equivalence. The second issue is the inclusion of the Ramond sector in the equivalence,

while the third is the extension of the mapping to the quantum level. In fact, the second

is a pre-requirement of the third, since Ramond states can be produced in loops even

when calculating processes involving only NS fields as external states. However, as we

already mentioned, the Ramond sector of the cubic theory is inconsistent. Hence, a genuine

correspondence cannot exists. Nonetheless, we prove the existence of a formal equivalence

between the theories in section 3. Then, in section 4, we extend the formalism to describe

arbitrary brane systems.

We believe that the cubic theory with the Ramond sector should be thought of as

being a singular limit, or a bad gauge fixing, of another, benign theory. One candidate

for the consistent theory is the non-polynomial theory. However, the fact that the formal

manipulations performed in section 3 show that (up to mid-point regularization issues) the

cubic and non-polynomial theories are formally equivalent, seems to suggest that regardless

of its inconsistency in its current formulation, not all is bad in the cubic theory. A possibility

for defining a consistent cubic theory is discussed in section 5, where we study a theory

with two Ramond string fields that has some attractive features. Nonetheless, since in

this theory the Ramond sector is doubled, it should somehow be further modified in order
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to give the cubic theory that we seek. We did not find a way to do that in a manner

that avoids the infamous picture changing collisions. Hence, this theory is only a first step

towards the goal of a consistent cubic theory. We comment on that and on some other

issues in the conclusions section 6.

In the non-polynomial theory, the incorporation of the Ramond sector was performed

in [8, 17, 18]. While this theory seems to be consistent, it is not known how to define it

covariantly using a single Ramond string field. The best one can do covariantly is to write

an action with two Ramond fields, at pictures ±1
2 and add a constraint relating them. One

could try to implement the constraint using a Lagrangian multiplier. However, this will

introduce a non-trivial equation of motion for the new Lagrangian-multiplier-string-field.

It might be possible to get around this issue by making this field a part of a quartet or by

adding more Lagrangian multipliers along the lines of [19], but this was not done so far.

The parity of the Ramond string fields in both theories is the same as that of the NS

string fields of the same theory. This might come as a surprise, since the vertex operators

in the Ramond sector have an opposite parity to that of the NS+ sector. However, since

the components of the Ramond string field represent fermions in space-time, the coefficient

fields themselves have to be odd. This brings the total parity of the Ramond string field

to the desired value, i.e., they are odd in the cubic theory and they are even in the non-

polynomial one. We refer the reader to appendix A for some tables of the quantum numbers

of the relevant operators and string fields.

We end this introduction by presenting some conventions and some of the operators

we use. Throughout this paper [A,B] denotes the graded commutator, i.e.,

[A,B] ≡ AB − (−)ABBA , (1.1)

where A and B in the exponent represent the parity of A and B. An important building

block in our construction is the operator,

P (z) = −cξ∂ξe−2φ(z) . (1.2)

This operator is a contracting homotopy operator for Q in the large Hilbert space, i.e.,

[Q,P (z)] = 1 . (1.3a)

Other important relations are,

[Q, ξ(z)] = X(z) , (1.3b)

[η0, ξ(z)] = 1 , (1.3c)

[η0, P (z)] = Y (z) , (1.3d)

where X and Y are the picture changing operator and the inverse picture changing operator

respectively. These operators obey the OPE,

XY ∼ 1 . (1.4)

– 3 –
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It is also possible to define the double picture changing operators X2 and Y−2, obeying,

Y−2X ∼ Y , X2Y ∼ X , X2Y−2 ∼ 1 . (1.5)

We will also use the following (regular) OPE’s,

PX ∼ ξ , (1.6a)

ξY ∼ P , (1.6b)

PP ∼ 0 , (1.6c)

ξξ ∼ 0 , (1.6d)

Pξ ∼ 0 . (1.6e)

The divergent OPE’s are XX, Y Y , Xξ and Y P .

We will use the operators appearing in (1.6) as mid-point insertions on string fields.

This is not a-priori excluded, since they are all primaries of zero conformal weight [7].

When these operators are inserted at the mid-point over the string fields Ψ1,2 having no

other mid-point insertions one finds,

(O1Ψ1) ⋆ (O2Ψ2) = (−)O2Ψ1(O1O2)(Ψ1 ⋆Ψ2) = (−)O2(O1+Ψ1)(O2O1)(Ψ1 ⋆Ψ2) , (1.7)

that is, the star algebra factorizes to a product of a graded-Abelian mid-point operator-

insertion algebra and a regular string field star algebra. We shall often refer to (1.6), when

we actually mean its part within expressions of the form of (1.7). Henceforth, we shall

omit the star product, as it is the only possible product of string fields.

2 The Ramond sector of the cubic theory is inconsistent

Witten’s cubic superstring field theory [5] was shown to be inconsistent, due to singularities

in its gauge transformations [6, 20]. These singularities emerge from collisions of picture

changing operators: The picture changing operator X is inserted at the string mid-point,

which is invariant under the star product. Hence, the double pole in theXX OPE gives rise

to infinities when the linearized gauge transformation is plugged into the action. The origin

of this problem lies in the presence of the picture changing operator X in the linearized

gauge transformation in Witten’s theory,

δA = QΛ +X[A,Λ] . (2.1)

This in turn is inevitable, since the NS string field A and the NS gauge string field Λ

are both of picture number −1. Changing the picture of Λ to zero, would force one to

introduce an insertion of the inverse picture changing operator Y on top of the QΛ term

and collisions would still occur, now due to the double pole in the Y Y OPE.

In order to remedy this problem, it was suggested that the NS string field A should

have a zero picture number [2–4]. The Ramond sector is then described by the picture −1
2
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string field α [2]. The modified action reads,

S = SNS + SR , (2.2a)

SNS = −
∫

Y−2

(

1

2
AQA+

1

3
A3

)

, (2.2b)

SR = −
∫

Y

(

1

2
αQα+Aα2

)

, (2.2c)

and its equations of motion are,

Y−2(QA+A2) + Y α2 = 0 , (2.3a)

Y (Qα+ [A,α]) = 0 . (2.3b)

Acting on these equations with X2,X respectively brings them to the form

QA+A2 +Xα2 = 0 , (2.4a)

Qα+ [A,α] = 0 , (2.4b)

where (1.4) and (1.5) were used.

The action (2.2) is invariant under the following infinitesimal gauge transformations,

δA = QΛ + [A,Λ] +X[α,χ] , (2.5a)

δα = Qχ+ [α,Λ] + [A,χ] , (2.5b)

where Λ and χ are the NS and Ramond gauge string fields respectively. It is clear that

no collisions can emerge when only the NS sector is considered, since no picture changing

operators appear in this case.

In [2], it was claimed that this gauge transformation is regular also in the Ramond

sector. To “prove” that, the infinitesimal transformation (2.5) was plugged into the equa-

tions of motion (2.4). It was found that this does not lead to collisions of picture changing

operators at the leading order in the gauge string fields. However, if one considers also the

term quadratic with respect to the gauge string fields, collisions do occur. One may hope

that adding the next (first non-linear) order to (2.5) produces another singular term that

cancels the former. This is plausible a-priori, since both terms are quadratic with respect

to χ. Nonetheless, a direct evaluation reveals that this is not the case. Moreover, the sin-

gularity of the transformation can be seen even without referring to the action. Consider

for simplicity the case A0 = 0, α = α0 6= 0 and act with a gauge transformation in the

Ramond sector, i.e., take Λ = 0 and χ 6= 0. Further, assume for simplicity that Qχ = 0.

Explicit iterations of the linearized gauge transformations give,

α→ α0 → α0 +X
[

[α0, χ], χ
]

→ . . . , (2.6a)

A→ X[α0, χ] → 2X[α0, χ] → 3X[α0, χ] +X2
[

[

[α0, χ], χ
]

, χ
]

. (2.6b)

We see that the expression we get for A after the third iteration is generically divergent.

Furthermore, by plugging this expression into the action and expanding it to second order

with respect to χ we also obtain divergences, as stated.
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One may think that iterating the linearized transformation, as we do here, is too naive

and that the full non-linear transformation will somehow manage to avoid this problem.

This is not the case. The full non-linear transformation is obtained from iterating the

linearized one, while rescaling the gauge fields at the nth iteration as

Λ → λ

n
Λ , χ→ λ

n
χ , (2.7)

where λ is a fixed parameter. This fixes the coefficient of the linearized transformation to

λ, while assuring the infinitesimal character of the gauge field. Hence, the only difference

between the expression above and the exact one is in the numerical values of the coefficients,

which will not change dramatically. Nonetheless, in order to remove any doubts let us

consider also the full non-linear transformation, pretending for the moment that it exists.

The differential equation defining it is of the form,

d

dλ
~A(λ) = V + L ~A(λ) . (2.8)

Here, we defined,

~A(λ) ≡
(

A(λ)

α(λ)

)

. (2.9)

Now, λ serves as an evolution parameter for the gauge transformation and the initial

condition ~A(0) is the string field before the gauge transformation. The fixed string field V

and linear operator L in our case are,

V =

(

QΛ

Qχ

)

, (2.10)

L =

(

ΛR − ΛL X(χR − χL)

χR − χL ΛR − ΛL

)

, (2.11)

where ΛR and χR represent multiplication from the right by Λ or χ, while ΛL and χL

operate from the left. Note, that left and right operations commute. The general solution

of (2.8) is,

~A = eλL ~A(0) +
eλL − 1

L V , (2.12)

where the operator multiplying V is defined by its Taylor series and is regular. It is easy

to verify that in the pure NS case (2.12) reduces to the familiar form,

A(λ) = e−λΛ
(

A(0) +Q
)

eλΛ . (2.13)

For the example considered in (2.6), we see that the divergent term X2
[

[

[α0, χ], χ
]

, χ
]

indeed appears and its coefficient is λ3

6 . Higher order terms have higher degree of divergence,

i.e., higher powers of X, multiplying other conformal fields and the total expression has

the form of an essential singularity.

A way out could have still existed. The powers of X in (2.12) are partially correlated

with the power of the gauge string field χ. Hence, constraining χ to always carry a factor of

– 6 –
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Y in its definition could potentially eliminate the singularity. However, this will introduce

singularities due to collisions of Y in (2.12). In fact, in this case singularities will emerge

even earlier, since the action also contains a factor of Y . An operator that could have

worked is P , since its OPE with X give ξ, which has a trivial OPE with P and on the

other hand, no singularities can emerge from iterations of P itself (1.6). Nonetheless, this

cannot be an accepted resolution, since P and ξ do not live in the small Hilbert space, to

which ~A belongs. Replacing P (i) by, say, P (i) − P (0) that does live in the small Hilbert

space would not solve the problem, since some of the singularities would still be left. The

only option for eliminating the singularities in such a way would be to use P (i) − P (−i).
This, however, does not resolve the problem of singularities in the action, since the Y P

OPE diverges. Moreover, if one constrains the gauge string field to contain some given mid-

point insertion, it seems to us that the physical string field should also be constrained in a

similar way, since otherwise the linearized equation of motion would not correspond to the

world sheet theory results. Constraining the physical string field to have some insertions as

part of its definition essentially leads to a redefinition of the theory. The redefined theory

can be Witten’s theory or some other variant, e.g., [21]. However, it seems that there is no

simple modification of the mid-point structure that resolves the singularities both in the

gauge transformation and in the action.

Another possible resolution would be to replace theX in the definition of the linearized

gauge transformation by some sort of an operator that will effectively induce a projection

to the correct space of string fields.3 It might be the case that a variant of the regularized X

insertions of [2] would work. These variants are non-local operators, that were introduced

in order to resolve the singularities in the tree-level scattering amplitudes. Presumably,

if they are good for resolving one sort of a singularity of the theory they might also help

to resolve the other. However, for the sake of the linearized gauge transformation, the

mid-point character of the X insertion is important. Specifically, the relation,

X(Ψ1Ψ2) = (XΨ1)Ψ2 = Ψ1(XΨ2) , (2.14)

is imperative for proving that this is actually a symmetry. It is not clear to us how

could a non-local variant of X obey this relation. Also, one would still have to verify

that the resulting (finite) gauge symmetry is singularity-free. These points would have

to be addressed in any attempt to resolve the gauge symmetry singularities along these

lines. Such a resolution, if possible at all, would be a non-trivial redefinition of the gauge

symmetry.

We conclude that, for the current formulation of the theory, the well-defined (up to

issues regarding the space of string fields) linearized gauge transformation cannot be expo-

nentiated to a finite gauge transformation. Hence, the fermionic gauge invariance is lost.

One might be tempted to give up this invariance. However, this would result in a wrong

number of fermionic degrees of freedom, the theory is then no longer open string theory and

there is no reason to believe that it would be well defined quantum mechanically. Hence,

the Ramond part of the cubic action in its current form cannot be trusted.

3This possibility was proposed to me by Scott Yost.
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3 The equivalence

Regardless of the inconsistency of the cubic theory, we would like to examine to what extent

could the NS sector equivalence of [10] be extended to the Ramond sector. We manage to

construct mappings between solutions of both theories in 3.1 and we prove in 3.2 that (up

to the question of the existence of a regularization) the action of corresponding solutions

is the same. All that is still needed for establishing a classical equivalence is to prove that

gauge orbits are sent to gauge orbits bijectively. This cannot be quite the case, since in the

case of the cubic theory the gauge orbits are not well defined. Nonetheless, we can check

these statements at the linearized level, where the cubic theory does not suffer from any

obvious problems. We find in 3.3 that the correspondence indeed holds at that level. This

also implies that the cohomologies around equivalent solutions are the same.

The cubic theory was already presented in section 2. Let us now turn to the non-

polynomial theory, due to Berkovits [8]. In this theory picture changing operators are

avoided altogether by working in the large Hilbert space. This enables one to work with a

string field of ghost and picture number zero in the NS sector. The doubling of the degrees

of freedom is compensated by a novel gauge symmetry. Again, the action can be written

as a sum,

S = SNS + SR . (3.1a)

The NS part of the action was given in [8],

SNS =
1

2

∮
(

e−ΦQeΦe−Φη0e
Φ −

∫ 1

0
dtΦ[e−tΦη0e

tΦ, e−tΦQetΦ]

)

, (3.1b)

where the integral
∮

represents integration in the large Hilbert space.4

It is not easy to add the Ramond sector to the non-polynomial theory. The equations of

motion were found in [8], but it seems that they cannot be derived from a covariant action.

In [18], the difficulty with the Ramond sector was attributed to a self duality property of

the string field5. It was suggested there, in analogy with the treatment of the type IIB

self dual RR form, to introduce another string field and impose a self duality constraint

between the two Ramond string fields. The Ramond part of the action is then,

SR = −1

2

∮

e−ΦQΞeΦη0Ψ , (3.1c)

where Ξ and Ψ are the Ramond string fields. The action should be supplemented with

the constraint,

e−ΦQΞeΦ = η0Ψ , (3.1d)

which should be imposed only after deriving the equations of motion.

4A novel representation of this action was given in [22], SNS = −
H R

1

0
dt ηAtAQ, where, A∇ stands for

e−tΦ
∇etΦ and ∇ is an arbitrary derivation of the star product. Here, ∇ can represent one of the odd

canonical derivations Q and η0, as well as the variation δ or the derivative with respect to the parameter t,

∂t. To get from (3.1b) to this form one has to rewrite the former as, SNS =
R

1

0
dt

H

“

∂t(AQAη)−At[Aη, AQ]
”

and use several times the identity, F∇1∇2
≡ ∇1A∇2

− (−)∇1∇2∇2A∇1
+ [A∇1

, A∇2
] = 0 .

5The Ramond string field contains a massless chiral fermion.
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The equations of motion are now,

η0(e
−ΦQeΦ) +

1

2
[η0Ψ, e

−ΦQΞeΦ] = 0 , (3.2a)

η0(e
−ΦQΞeΦ) = 0 , (3.2b)

Q(eΦη0Ψe
−Φ) = 0 . (3.2c)

Taking the constraint (3.1d) into consideration this set of equations reduces to,

η0(e
−ΦQeΦ) + (η0Ψ)2 = 0 , (3.3a)

Q(eΦη0Ψe
−Φ) = 0 . (3.3b)

3.1 The mapping

For the NS sector, the mapping is given by

Ã = e−ΦQeΦ . (3.4)

We append this mapping with the Ramond counterpart,

α = iη0Ψ . (3.5)

In these variables the equations of motion (3.3) take the form,

η0Ã− α2 = 0 , (3.6a)

Qα+ [Ã, α] = 0 . (3.6b)

These two equations should be appended with the consistency conditions that follow from

the definitions (3.4) and (3.5),

QÃ+ Ã2 = 0 , (3.6c)

η0α = 0 . (3.6d)

The last equation implies that α is defined in the small Hilbert space. However, the

introduction of a non-trivial Ramond field implies that Ã is no longer a member of the

small Hilbert space, as can be read from (3.6a). To remedy this problem we define,

A = Ã− ξα2 . (3.7)

This string field does live in the small Hilbert space as a result of the definition (3.6a) and

the commutation relation (1.3c).

Now, both variables live in the small Hilbert space as a result of (3.6a) and (3.6d)

and the role of the equations of motion is played by (3.6b) and (3.6c). Rewriting these

equations in terms of A,α we get exactly the equations of motion of the cubic theory (2.4).

To that end, one has to use the nilpotency property (1.6d) as well as the fact that ξ is a

midpoint insertion. To summarize, our mapping is given by,

A = e−ΦQeΦ + ξ(η0Ψ)2 , (3.8a)

α = iη0Ψ . (3.8b)

– 9 –
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We discuss why the NS sector mapping of (3.8a) has to be modified in appendix B.

For the inverse mapping we define,

Φ = PA , (3.9a)

Ψ = −iξα . (3.9b)

These definitions are enough for showing that the equations of motion are invariant. How-

ever, since we are also interested in proving the invariance of the action, we also add

the definition,

Ξ = −iPα . (3.9c)

One can check that the definitions of Ψ and Ξ are consistent with the constraint (3.1d).

Composing the maps (3.8) and (3.9) one gets,

Anew = e−ΦQeΦ − ξα2 = (1 − PA)Q(PA) − ξα2 (3.10a)

= A− P (QA+A2) − ξα2 = A+ PXα2 − ξα2 = A ,

αnew = η0ξα = α . (3.10b)

In (3.10a) we used the nilpotency of P (1.6c), the equation of motion (2.4a), as well as the

OPE (1.6a), while in (3.10b) we used the fact that α is defined in the small Hilbert space.

In the opposite direction one gets,

eΦnew = 1 + P
(

−Qe−ΦeΦ − ξα2
)

= QPe−ΦeΦ = e−QPΦeΦ , (3.11a)

Ψnew = ξη0Ψ = Ψ − η0ξΨ , (3.11b)

where in (3.11a) we first used the OPE (1.6e) and then we used (1.6c) and (1.3a). In

this direction the composition of the transformations gives the identity operator only for

a specific gauge choice for Ψ. Otherwise, it gives a gauge equivalent string field as will be

shown in 3.3.

3.2 The action

We want to prove that the action of solutions is the same in both theories. For the NS

part, this was shown to hold in [10]. In fact, what was proven there is the following: Given

the mapping (3.9a), the values of the actions (2.2b) and (3.1b) are the same. For this proof

the equations of motion were not used. Hence, we can use it here, regardless of the fact

that the equations of motion of the NS sector are modified by Ramond terms.

To complete the proof we now show that in both theories the Ramond part of the

action of an arbitrary solution is zero. For the cubic theory this results from the fact that

both terms of the Ramond part of the action are proportional to α2 and hence to the star

product of α with the α equation of motion (2.4b). For the non-polynomial theory, (3.2b)

implies that the Ramond part of the action integrand is annihilated by η0. Hence, its

large-Hilbert-space integral is zero.

While we proved that the Ramond sector poses no new problems for the equality

of the action, one should remember that for the proof of equality in the NS sector, the

existence of an adequate regularization should be assumed [10]. We again assume that

such a regularization exists.
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3.3 Gauge transformations

As we already stressed, the finite gauge transformation of the cubic theory is not well

defined. Hence, strictly speaking, there is no way to match gauge orbits between the two

theories. Nevertheless, when restricted to linearized gauge transformations, all expressions

make sense. We would therefore like to study the linearized gauge transformations, assum-

ing that the action (2.2) is some sort of a singular limit of a well behaved cubic theory.

Since the singularity of the cubic theory does not expresses itself at the linearized level, we

expect that, at that level, the formal equivalence that we study works.

For the gauge transformations on the side of the non-polynomial theory, one should

distinguish between the gauge symmetries of the action (3.1) and that of the equations of

motion (3.3), which is obtained after the use of the constraint (3.1d). For the action, the

gauge symmetries are,

δeΦ = eΦη0Λ1 +QΛ0e
Φ , (3.12a)

δΨ = η0Λ 3

2

+ [Ψ, η0Λ1] , (3.12b)

δΞ = QΛ− 1

2

+ [QΛ0,Ξ] , (3.12c)

where the four gauge string fields are labeled by their picture numbers. This symmetry is

consistent with the constraint (3.1d). With this constraint imposed, the gauge transfor-

mation generated by Λ− 1

2

becomes trivial. On the other hand, on the constraint surface

there is an enhancement of symmetry, i.e., a new gauge string field Λ 1

2

generates gauge

transformations on this surface [18]. The gauge symmetry takes the form,6

δeΦ = eΦ(η0Λ1 − [η0Ψ,Λ 1

2

]) +QΛ0e
Φ , (3.13a)

δΨ = η0Λ 3

2

+ [Ψ, η0Λ1] +QΛ 1

2

+ [e−ΦQeΦ,Λ 1

2

] . (3.13b)

Suppose now that we map a solution of the cubic theory to the non-polynomial one and

that this cubic solution is modified by a gauge transformation. This induces the following

transformation on the side of the non-polynomial theory,

δΦ = PδA = P (QΛ + [A,Λ] +X[α,χ]) , (3.14a)

δΨ = −iξδα = −iξ(Qχ+ [α,Λ] + [A,χ]) . (3.14b)

The map (3.9a) together with the nilpotency of P (1.6c) implies that

eΦ = 1 + Φ = 1 + PA , (3.15a)

δeΦ = δΦ . (3.15b)

Now, define

Λ0 = −PΛ , Λ 1

2

= iξχ , Λ1 = ξΛ , Λ 3

2

= −iξ̃Xχ . (3.16)

Here, ξ̃ in the definition of Λ 3

2

represents a ξ insertion at any arbitrary point other than the

midpoint, in order to avoid singularities from the OPE of X and ξ. Alternatively, we can

6Note that Λ0 here is −ΛQ of [10].
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take the normal ordered product :ξX :. Since Λ 3

2

appears only in the combination η0Λ 3

2

,

the point at which ξ̃ is inserted is of no consequence. With these gauge string fields the

transformation (3.13) takes the form

δΦ = (1 + PA)(η0ξΛ − [η0ξα, ξχ]) −QPΛ(1 + PA)

= (1 + PA)(Λ − [α, ξχ]) + (PQΛ − Λ)(1 + PA)

= Λ + PAΛ + ξ[α,χ] + PQΛ − Λ − PΛA ,

(3.17a)

δΨ = −iη0ξ̃Xχ− i[ξα, η0ξΛ] + iQξχ+ i[(1 − PA)Q(1 + PA), ξχ]

= −iXχ− iξ[α,Λ] + iXχ− iξQχ− iξ[A,χ] .
(3.17b)

These transformations coincide with those of (3.14). Hence, a gauge transformation of the

cubic theory induces a gauge transformation of the non-polynomial theory.

Let there now be two gauge equivalent solutions of the non-polynomial theory. There

are four gauge string fields relating these two solutions, Λ0, Λ 1

2

,Λ1, Λ 3

2

. It is easy to see

that Λ0 and Λ 3

2

do not induce any variation of A and α. As for Λ 1

2

and Λ1, one can see

that they induce a gauge transformation, where the gauge string fields in the side of the

cubic theory are given by,

χ = −iη0Λ 1

2

, Λ = η0Λ1 + [α,χ] . (3.18)

The proof is similar to the above, even if somewhat longer, and makes use of the equation

of motion (2.4b), the OPE (1.6d), the relation (1.3b) and the graded Jacobi identity7 for

the fields α,χ and A,

[A, [α,χ]] − [α, [χ,A]] + [χ, [A,α]] = 0 . (3.19)

Finally, we have to show that mapping a solution of the non-polynomial theory to

the cubic theory and then back to the non-polynomial one results in a solution, which is

gauge equivalent to the original one. The opposite assertion is trivial, since as we showed,

composing the mappings in the opposite order results in the identity mapping. Now, we

have to use the finite form of the gauge transformation, since the original solution and

the one obtained after the mappings are by no means infinitesimally close. There is no

problem in working with the finite gauge transformation, since we now consider the side

of the non-polynomial theory, where the finite gauge transformation is well defined. The

expressions for the fields after the mappings are given by (3.11). It is clear that we do not

have to exponentiate the full linearized gauge symmetry (3.13). All that is needed is to

consider the following non-zero gauge fields,

Λ0 = −PΨ , Λ 3

2

= −ξΨ . (3.20)

The finite gauge transformation generated by these fields gives exactly (3.11).

We can now conclude that (on-shell and up to the problems in the Ramond sector

of the cubic theory) gauge orbits in one theory correspond to gauge orbits in the other

theory. Also, the fact that the equations of motion and gauge symmetries are mapped to

each other in both directions implies that the same holds also for their linearized versions.

Hence, both theories have the same cohomologies around solutions.

7Recall that [·, ·] is the graded commutator in our notations (1.1).
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4 The equivalence for general D-brane configurations

The general D-brane system introduces the need for Chan-Paton factors, as well as the

choice of sectors (NS± / R±) that enter into each entry of the Chan-Paton matrix.8 The

study of the possible Chan-Paton factors and NS/R sectors is nothing but the classification

of possible open string theories.9 For this classification we need to impose the requirements

of mutual locality and closure of all the OPE’s, as well as the consistency of the interaction

with closed strings. The requirement of local OPE’s of all fields involved, implies that the

NS− sector cannot exist in the same Chan-Paton entry with Ramond fields and that the

R± fields are also mutually exclusive. Another requirement is the closure of the OPE,

which implies that the NS+ sector is always present. Hence (at any given Chan-Paton

entry) one may have either only the NS+ sector, or the NS+ sector with NS− or with

one of the R sectors. The combination of NS+ with either of R± can be realised on the

D-brane and on the D̄-brane. The NS± case is realised on the non-BPS D-brane. The pure

NS+ case can also be realised [24].

The introduction of Chan-Paton factors into string field theory is easy. One simply

tensors each string field with the appropriate Chan-Paton matrix and adds to the definition

of the integral also a normalized trace over the Chan-Paton space [11]. The operators of the

theories, namely Q, η0 and Y−2 are not affected and can be thought of as being multiplied

by the identity matrix in the Chan-Paton space.

Adding the NS− sector to the NS+ one, when working with a non-BPS D-brane (or at

an off-diagonal entry of the Chan-Paton matrix that represents strings stretching between

a D-brane and a D̄-brane), can be achieved by tensoring the previous structure also with

“internal Chan-Paton” (two by two) matrices and adding to the definition of the integral

also a normalized trace over this sector.10 This structure was first introduced for the non-

polynomial theory in [11], where it was shown that the NS+ sector should be tensored

with the two by two identity matrix and the NS− sector should be tensored with the

Pauli matrix σ1. The gauge string fields for these sectors are tensored with σ3 and iσ2

respectively and the operators Q and η0 are also tensored with σ3. For the cubic theory

this structure was introduced in [12], where it was shown that the roles of the string fields

and the gauge fields are revered, e.g., the NS− string field A− gets the iσ2 factor and the

NS− gauge field gets the σ1. The kinetic operator Q retains the σ3 factor that should also

be granted to Y−2.

This similarity in the structures of describing the NS± sectors in both theories, makes

the generalization of the mapping to the NS− sector straightforward. Indeed, the gener-

alization of the mapping for the NS− sector and for the case of Chan-Paton factors was

already given in [10]. All that is needed is to tensor ξ and P with σ3 (and with the identity

matrix in the genuine Chan-Paton space) and the mappings work.

8Here, we consider explicitly the ten dimensional, flat, Poincaré-invariant cases. Generalization to the

case with lower dimensional D-branes should be simple.
9See [23] for a thorough discussion on open string classification.

10The internal Chan-Paton matrices compensate for the opposite Grassmann parity of the two sectors

and restrict the interaction terms only to those that respect the GSO parity.
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Now, we want to consider the case of adding also R± sectors in various entries of the

Chan-Paton matrix. As mentioned in the introduction, the Ramond string fields are odd,

just like the NS+ string field. Furthermore, we never deal with both Ramond sectors or

with a Ramond sector together with an NS− sector. Hence, there is no need to append any

of the Ramond sectors with internal Chan-Paton factors. Nevertheless, in the case where

some other entries of the Chan-Paton matrix contain an NS− sector, it is possible, just

for the sake of a uniform description of the whole Chan-Paton matrix, to append internal

Chan-Paton factors also to the Ramond sector string fields. In such a case one should

define an internal Chan-Paton factor for the Ramond string field, σR. The σ3 factors on

A, Q and Y−2 imply that σR should square to the identity matrix and commute with σ3.

Hence, one should either choose σR = σ3 or σR = 1.

The same can be done for the non-polynomial theory. There, the string fields Ξ and

Ψ would have to be appended with σR that obeys the same conditions as in the case of

the cubic theory. Now, commutativity with σ3 should be implied due to its presence in Q

and η0.

For our mapping to work in these cases as well, one should make the opposite choice

for σR in the two theories, since σ3 appears with an odd power everywhere in our map-

pings (3.8) and (3.9). The most natural definition would be to define σR = 1 in the

non-polynomial theory and σR = σ3 in the cubic theory. Then, all the string fields (other

than the NS− ones) at any of the two theories, are appended with the same factor. The

same uniformity holds also for the gauge string fields. All the good properties of our

mappings are maintained.

5 A cubic action with two fields in the Ramond sector

Establishing the correspondence between the cubic theory (2.2) and the non-polynomial

theory (3.1) including the constraint (3.1d), one may ask whether there is some sort of an

extension of the mapping for the unconstrained non-polynomial theory as well. For such a

mapping to exist, we have to consider a modification of the cubic theory with two Ramond

fields. In fact, this is a natural avenue from the perspective of the cubic theory as well, as

we explain below.

Furthermore, the fact, discussed above, that the Ramond sector of the cubic theory is

ill-defined, calls for a refined, mid-point-insertion-free formulation. Recall that the prob-

lems of the formalism originate from the mid-point insertions in the definitions of the gauge

transformations, not from the mid-point insertion in the definition of the action. In fact,

when string fields with mid-point insertions are assumed to be outside the space of allowed

string fields, the use of mid-point insertions in the definition of the action does not lead to

any problems. We refer again to [7] for further discussion on this issue.

The modified cubic theory solved the problems of the original cubic theory by working

with NS fields in the “neutral” (zero) picture. This cannot be imposed on the Ramond

fields, since they carry half-integer picture numbers. The closest one can get is to use a

±1
2 picture. Of these two options, the “natural” Ramond (−1

2 ) picture was selected. The

fact that a non-zero string field is used implies that picture changing operators appear
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in the equations of motion and gauge transformations. These operators must be inserted

at the mid-point, leading to potential singularities of the theory. If two Ramond fields

are allowed, one can write an action, whose equations of motion will not include picture

changing operators other than the global Y−2 insertion. Of course, the physical theory has

only one Ramond field. Hence, a constraint should be imposed. This constraint is bound

to include picture changing operators, leading to the usual equations of motion (2.4). So

one may be under the impression that nothing is gained. Still, the fact that the new

action is equivalent (as we shall promptly see) to the unconstrained non-polynomial action

may suggest that these two actions might have some meaning even before the constraint is

imposed. Moreover, one might speculate that the new action can be useful for quantization

and for generalizations of the theory.

From the above discussion one can immediately guess the action,11

S = −
∫

Y−2

(

1

2
AQA+

1

3
A3 +

1

2
α̃Qα+

1

2
A[α, α̃]

)

, (5.1)

with α having picture number np(α) = −1
2 as before and np(α̃) = 1

2 . From this action

follow the equations of motion (omitting the global Y−2),

QA+A2 +
1

2
[α, α̃] = 0 , (5.2a)

Qα+ [A,α] = 0 , (5.2b)

Qα̃+ [A, α̃] = 0 . (5.2c)

It is interesting to notice that the three string fields can be unified in terms of a single

string field simply by adding them. Define,

Â = A+
α+ α̃√

2
, (5.3)

and expand in terms of these constituents the natural action for Â,

S = −
∫

Y−2

(

1

2
ÂQÂ+

1

3
Â3

)

. (5.4)

Expanding the integrand one gets the integrand of the action (5.2a) together with some

other terms. However, all other terms have wrong picture numbers and hence can be safely

dropped out of the action.

The constraint we should impose is,

α̃ = Xα ⇐⇒ α = Y α̃ . (5.5)

While both representations above are correct, the left one is more accurate in the sense

that α̃ is the string field with the actual mid-point X insertion. A genuine Y insertion

is prohibited, since it would lead to singularities with the Y−2 insertion in the action.

11The proofs of the various properties of the mapping between this action and the unconstrained non-

polynomial action are quite similar to those of 3. Hence, we tend to be brief here.
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Keeping this constraint in mind, we also prohibit explicit X insertions in α. Applying this

constraint, the action and the equations of motion reduce to (2.2) and (2.4) respectively.

At the linearized level the action (5.1) in invariant under three independent

gauge transformations,

δA = QΛ , δα = Qχ , δα̃ = Qχ̃ . (5.6)

However, only the first of these gauge transformations has an extension at the non-linearized

level. Hence, the complete gauge invariance of the theory reads,

δA =QΛ + [A,Λ] , (5.7a)

δα = [α,Λ] , (5.7b)

δα̃ = [α̃,Λ] . (5.7c)

This can be understood from the compact form of the action (5.4). This form implies that

the gauge symmetry is,

Â→ e−Λ̂(Q+ Â)eΛ̂ . (5.8)

If one tries to substitute into Λ̂ any component, whose picture is non-zero, it will result in

taking the string field Â out of the allowed picture-number range, −1
2 ≤ p ≤ 1

2 . Hence, Λ̂

should be restricted to have only the zero picture component Λ and the gauge transforma-

tion reduces (in its linearized form) to (5.7).

Imposing the constraint (5.5) leads to an enhancement of the gauge symmetry to (2.5)

(modulo the consistency problem of this gauge transformation), in analogy with the sit-

uation in the non-polynomial theory. In fact, the absence of gauge symmetries for the

fermionic string fields should be expected, if we indeed believe (and shortly prove) that

this theory is equivalent to the non-constrained non-polynomial theory. This can be seen

by counting degrees of freedom. The non-polynomial theory resides in the large Hilbert

space, that has double the degrees of freedom of the small Hilbert space, due to the presence

of the ξ0 mode. In this space both Q and η0 are trivial and hence gauge transformations

based on them reduce the degrees of freedom by a half. For the boson field, this theory has

the Λ1 gauge symmetry that effectively implies that the degrees of freedom of the theory

are isomorphic to those of the small Hilbert space. Then, on top of this gauge symmetry

there is also the Λ0 gauge symmetry that reduces the degrees of freedom of the theory in

exactly the same way that Λ reduces those of the cubic theory. Note that we can no longer

claim that this is a reduction by “a half”, since in the small Hilbert space Q is no longer

trivial. The two fermionic gauge symmetries of the theory, namely Λ− 1

2

and Λ 3

2

reduce to a

half the degrees of freedom of Ξ and Ψ respectively, rendering them potentially equivalent

to α and α̃. Had the cubic theory had more gauge symmetry, its degrees of freedom could

not have matched those of the non-polynomial one.

Our goal now is to find the mapping between the two theories. We propose

the mapping,

Φ = PA , Ψ = −iP α̃ , Ξ = −iPα . (5.9)
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We have to show that under this mapping solutions of the equations of motion (5.2) are

mapped to solutions of (3.2). From (5.9) we find that the l.h.s of (3.2a) is given by,

η0(e
−ΦQeΦ) +

1

2
[η0Ψ, e

−ΦQΞeΦ] = −Y
(

QA+A2 +
1

2
[α, α̃]

)

, (5.10)

which vanishes in light of the equation of motion (5.2a). Then, we find,

e−ΦQΞeΦ = −iα , (5.11)

where we used (1.6c). This implies that (3.2b) holds.

For calculating (3.2c), define

α̂ ≡ −iY α̃ , (5.12)

and evaluate,

Q
(

eΦη0Ψe
−Φ
)

= Q
(

(1 + PA)α̂(1 − PA)
)

= Qα̂+ [A, α̂] − PQ[A, α̂] = 0 , (5.13)

where the last equality follows from (5.2c). The last manipulation can be criticized on the

ground that a factor of Y was “hidden” in the definition of α̂. When considered explicitly

this factor would produce divergences with the factors of P that multiply it. We can avoid

this problem in one of two ways. One way is to recall that when we enforce the constraint

relating α and α̃ the later has an explicit factor of X multiplying it. We can declare that

α̃ has to have such an insertion even without the constraint. This does not change a priori

the amount of degrees of freedom of α̃ and solves the problem. Nonetheless, this resolution

is not quite satisfactory since our aim was to obtain a theory, which at least a priori is

free from explicit mid-point insertions over string fields. The other way is to rely on the

fact that we have to regularize the mappings anyway, in order to produce a sensible action.

Then, we can declare that obtaining the above result without any finite corrections is a

symmetry principle for the regularization scheme. This resolution further constrains the

needed regularization. However, we have more string fields now in our disposal, so it is

plausible that a regularization exists.

For the inverse mapping we choose,

α = ie−ΦQΞeΦ , (5.14a)

α̃ = iη0XΨ , (5.14b)

A = e−ΦQeΦ +
1

2
ξ[η0Ψ, e

−ΦQΞeΦ] . (5.14c)

The equations of motion of the non-polynomial theory (3.2) imply that A, α and α̃ live

in the small Hilbert space as they should. Next, we have to verify that the equations of

motion (5.2) also follow from (3.2) and the mapping (5.14). The proof for (5.2a) and (5.2b)

is straightforward. For the evaluation of the last equation (5.2c), define

Ψ̂ = iXΨ . (5.15)
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We then get,

Qα̃+ [A, α̃] = Qη0Ψ̂ +
[

e−ΦQeΦ +
1

2
ξ[η0Ψ, e

−ΦQΞeΦ], η0Ψ̂
]

(5.16)

= Qη0Ψ̂ +
[

(1 − ξη0)e
−ΦQeΦ, η0Ψ̂] = Qη0Ψ̂ − η0ξQη0Ψ̂ = ξη0Qη0Ψ̂ = 0 ,

where in the second equality (3.2a) was used and in the next equality (3.2c) was used.

Note, that similarly to what we had in (5.13), a singularity due to the collision of X and

ξ is hidden in the definition of Ψ̂. Here, we have no excuse for claiming that Ψ should

always have a factor Y in its definition for cancelling the X that multiplies it. Hence, the

only way out is to require the existence of a good regularization scheme. We stress again,

that as in the previous cases where we relied on the existence of the regularization, i.e., in

the evaluation of the action in [10] and in (5.13), we have neither an explicit form of the

regularization nor a proof of its existence. We return to this point in section 6.

It is straightforward to see that composing the mapping (5.14) on (5.9) results in the

identity mapping of the cubic theory. Suppose now that we compose the mappings in the

opposite order. We expect to get a finite gauge transformation. In fact we get,

eΦnew = e−QPΦeΦ , (5.17a)

as before, while for the fermionic fields we get,

Ψnew = Ψ − η0ξΨ , (5.17b)

Ξnew =Pe−ΦQΞeΦ = PQPe−ΦQΞQPeΦ = e−QPΦ(Ξ −QPΞ)eQPΦ . (5.17c)

Exponentiating the various transformations of (3.12) in order to get the form of the finite

gauge transformations one can see that (5.17) can be obtained by performing the following

finite gauge transformations in the order they are written,

Λ 3

2

= −ξΨ , Λ− 1

2

= −PΞ , Λ0 = −PΦ . (5.18)

Let there be two gauge equivalent solutions of the non-polynomial theory. The infinites-

imal gauge transformations are generated by the four gauge fields Λp with p = −1
2 , 0, 1,

3
2 .

Considering each of these transformations and mapping it to the cubic theory we see that

only Λ1 induces a non-trivial transformation of the cubic string fields. This variation is

given by (5.7), with the identification

Λ = η0Λ1 . (5.19)

We conclude that gauge equivalent configurations are mapped to gauge equivalent con-

figurations in this direction. In the side of the cubic theory we have only one gauge

transformation to consider. Substituting (5.7) into the mapping gives,

δeΦ = eΦΛ −QPΛeΦ , δΨ = [Ψ,Λ] , δΞ = [Ξ, QPΛ] . (5.20)

This is a gauge transformation in the side of the non-polynomial theory with the gauge

string fields given by,

Λ0 = −PΛ , Λ1 = ξΛ , Λ− 1

2

= Λ 3

2

= 0 . (5.21)
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We can now conclude that, when no constraints are imposed, the mapping of gauge orbits

between the two-Ramond-field cubic theory and the unconstrained non-polynomial theory

is bijective.

The proof of the equality of the action of solutions in both theories is very similar to

what we presented in 3.2. Again, we prove that the Ramond-sector contribution to the

action is zero for solutions in both theories. For the non-polynomial theory the proof only

used (3.2b), which does not depend on the constraint. Hence, there is nothing new to prove

here. For the cubic theory the Ramond part of the action integrand is bi-linear in α and

α̃, which implies that it is equal to the star product of α with its equation of motion, as

well as to the star product of α̃ with its equation of motion. Any one of this equalities is

enough to conclude that the action of solutions gets no contribution from this sector.

We proved the equivalence of gauge orbits, which also implies the identity of the coho-

mologies around solutions as well as the equality of the action of corresponding solutions.

Hence, we conclude that the two theories are classically equivalent.

Finally, let us illustrate that the constraints one has to impose on both theories are

equivalent. Starting at the cubic theory we have to impose (5.5). This immediately implies,

η0Ψ = −iY α̃ = −iα = e−ΦQΞeΦ , (5.22)

which is just the constraint of the non-polynomial theory (3.1d). The other direction is as

straightforward. The equivalence of the constraints together with the other results of this

section give an “alternative” derivation of all the results of section 3, since imposing the

constraints on both theories reduce them to the theories studied there.

6 Conclusions

In this work we proved the inconsistency of the modified cubic superstring field theory. The

inconsistency stems from collisions of picture changing operators in the finite form of its

Ramond-sector gauge transformations. This state of affairs implies that the cubic theory

should either be abandoned or modified. We believe that the later is the more sensible

option, for two reasons. The first, stressed throughout this paper, is the formal equivalence

between this theory and the non-polynomial theory. The second reason is the success of

this theory in describing the NS sector. In particular vacuum solutions and dynamical

tachyon condensation were studied both numerically and analytically, with very impressive

results [10, 25–29]. This can be compared to Witten’s superstring field theory that failed

to reproduce any such results [30]. We believe that had the cubic theory been completely

wrong, it would have not produced these results even in the NS sector. Hence, we need

a theory whose NS part reduces to the NS sector of the cubic theory in some limit. This

theory should also consistently include the Ramond sector. A possible modification for the

cubic theory was recently proposed using non-minimal sectors [7, 31]. It seems, however,

that it cannot solve the consistency problem of the Ramond sector [7]. In section 5, we

introduced a first step towards a different sort of a modification. There, the Ramond sector

was doubled in order to avoid mid-point insertions of picture changing operators on string

fields. The doubling of the Ramond sector kills supersymmetry. In order to restore it,
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one might consider doubling the NS sector as well. One might even speculate that such

a doubling may be useful for constructing closed superstring field theories, especially in

light of [32].

At any rate, the cubic theory with doubled Ramond sector is by itself not satisfactory,

since it does not have the correct amount of degrees of freedom. Following the example

of [18], we tried to resolve this problem by introducing a constraint. It seems, however,

that such a constraint is bound to include explicit mid-point insertions, which we have to

avoid. Hence, we have to look for another sort of resolution. An appealing possibility is to

further enlarge the field content as well as the gauge symmetry, such that the final amount

of degrees of freedom is reduced to the correct one. We currently study this possibility and

generalizations thereof.

The second issue studied in this work is the formal equivalence of the cubic and non-

polynomial theories. All the properties studied in this work were shown to be invariant

under our mappings, supporting the equivalence. However, there is one more invariant

that one might wish to consider. This is the boundary state constructed from the solu-

tion [15] (see also [33–37]). To study this in the context of our equivalence one would first

have to combine some ideas from [38] and [15], in order to define boundary states for the

supersymmetric theories. We currently study this subject.

It might seem strange that the Ramond parts of our mappings (3.8b) and (3.9b),

include factors of i. One might worry that our construction is inconsistent with the reality

condition of the string field. In fact, it is the other way around. Recall that, in the

Ramond sector, the coefficient fields are Grassmann odd. The reality condition is obtained

by composing Hermitian conjugation and BPZ conjugation. While the first inverts the order

of insertions in the usual way, the second does not change the formal Grassmann order [39].

Hence, the reality of the string field α implies that the string field ξα is imaginary. The i’s

take care just of that.

Much of the recent renewal of interest in string field theory is due to Schnabl’s solu-

tion [16] and subsequent work [40–58]. Having explicit analytical expressions for string field

theory solutions evoked the realisation that these solutions can be formally represented as

pure gauge solutions. In the bosonic theory, solutions can be written using singular gauge

string fields [59]. For the cubic superstring field theory in the NS sector, the equivalence

of [10] provides a formal gauge form for the solutions. The “gauge string field” is formal in

this case since it resides in the large Hilbert space. The extension of the equivalence to the

Ramond sector presented here does not seem to define a solution with a form of a formal

gauge solution. This statement, however, is ill-defined, since the finite gauge transforma-

tion of the Ramond sector does not exist for the cubic theory. One might suspect that

in a well defined refinement of the cubic formalism it would be possible to write solutions

as formal gauge ones. However, in the cubic formalism with two Ramond fields that we

introduced in 5, one sees that the gauge transformation of the Ramond fields (5.14) is zero

for a solution with zero Ramond fields. Thus, one cannot get a solution with non-trivial

Ramond fields as a gauge solution around the vacuum. This can be traced to the fact that

we have no gauge symmetry in this theory whose generators are fermionic. There is also

no supersymmetry in this theory. It might be the case that in a more physical refinement

of the cubic theory there will be a natural way for writing solutions as formal gauge ones.
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While studying the mappings between the cubic and non-polynomial two-Ramond-field

theories, we got twice expressions, which were formally of the form of a zero times a diver-

gence that came from a mid-point collision of operators. This implies that a regularization

is needed in which these expressions could be consistently set to zero. We thus have two

requirements from a consistent regularization, on top of the requirement that we had from

calculating the NS action [10]. On the other hand, we also have two more string fields,

i.e., the Ramond ones and two more mappings (in each direction) to modify for defining

the regularizations. Hence, the existence of a sound regularization is as plausible as it is

for the NS case. We would like to stress that even regardless of the issue of singularities,

a regularization is desirable, since the mappings we introduced include various mid-point

insertions on string fields. Mid-point insertions on string fields are highly constrained and

a formulation that avoids them altogether would be more reliable [7].
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A Quantum number tables

In this appendix we present the sector (R/NS), ghost number ng, picture number np and

parity of the string fields and string gauge fields. Those of the modified cubic theory are

presented in table 1 while those of the non-polynomial theory are presented in table 2. As

the tables imply, string fields are odd and gauge string field are even for the cubic theory,

while the opposite is true for the non-polynomial theory. Also, in table 3 we present the

quantum numbers of the operators that compose the string fields.
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string field R/NS ng np parity

A NS 1 0 1

α R 1 −1
2 1

Λ NS 0 0 0

χ R 0 −1
2 0

Table 1. Modified cubic theory: all string fields live in the small Hilbert space.

string field R/NS ng np parity

Φ NS 0 0 0

Ψ R 0 1
2 0

Ξ R 0 −1
2 0

Λ− 1

2

R -1 −1
2 1

Λ0 NS -1 0 1

Λ 1

2

R -1 1
2 1

Λ1 NS -1 1 1

Λ 3

2

R -1 3
2 1

Table 2. Non-polynomial theory: string fields live in the large Hilbert space. The subscripts of

the gauge fields represent their picture number.

field h ng np parity

∂Xµ 1 0 0 0

ψµ 1
2 0 0 1

b 2 -1 0 1

c -1 1 0 1

ξ 0 -1 1 1

η 1 1 -1 1

eqφ − q(q+2)
2 0 q q mod 2

JB 1 1 0 1

P 0 -1 0 1

X 0 0 1 0

Y 0 0 -1 0

X2 0 0 2 0

Y−2 0 0 -2 0

Table 3. The conformal weight h, ghost number ng, picture number np and parity of some

conformal fields.
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B Why should the bosonic mapping be modified

The extra piece in the r.h.s of (3.8a) may seem strange. Here, we want to discuss its origin.

The equation of motion (2.4a) is potentially problematic, since it involves the mid-

point operator insertion X. It implies that either A or α are allowed such an insertion. If

we assume that A is not allowed to have mid-point insertions, it follows that either α2 = 0,

which is too restrictive, or that α2 contains a factor of Y that cancels the X. For that to

be the case it should be possible to write

α = O1α(1) + O2α(2) , (B.1)

where O1,2 are zero weight primaries inserted at the mid-point, whose ghost numbers are

opposite and whose picture numbers sum up to −1. These operators should also obey

the OPE’s

O1O1 ∼ 0 , O2O2 ∼ 0 , O1O2 ∼ Y . (B.2)

We failed to find such operators, both in the NS sector and in the Ramond sector. In

particular the choice O1 = Y, O2 = 1 does not obey the above OPE’s.12

Let us now assume that the mid-point insertion originates from A. We can decom-

pose A as

A = A0 + ξA−1 , (B.3)

where the subscript represents the picture-number. Substituting into (2.4a) and collecting

the coefficients of X, ξ and 1, that should separately vanish, we get,

QA0 +A2
0 = 0 , (B.4a)

A−1 + α2 = 0 , (B.4b)

QA−1 + [A0, A−1] = 0 . (B.4c)

The equation for the Ramond field (2.4b) reduces now to,

Qα+ [A0, α] = 0 . (B.4d)

Equation (B.4a) states that A0 is a flat connection, while (B.4c) and (B.4d) imply respec-

tively that A−1 and α are “covariantly constant” with respect to A0. Equation (B.4b) is

a constraint equation relating A−1 and α. With this constraint imposed, (B.4c) follows

from (B.4d). At this stage, one may think that A−1 can be discarded altogether, since

it is fixed by α. This is not quite the case, since from its definition (B.3) we see that its

contribution to A lives in the large Hilbert space. Since A itself lives in the small Hilbert

space, it follows that this contribution is needed in order to cancel other terms in A0 that

live in the large Hilbert space.

Comparing (B.3) to (3.8a), we see that

A0 = e−ΦQeΦ . (B.5)

12One can imagine relaxing the first two OPE’s in (B.2), so as to allow a larger algebra of mid-point

insertion operators. We did not manage to find a way to construct that either.
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This is the expression for A that one gets without the Ramond sector. Adding the Ramond

sector implies that this expression does not live anymore in the small Hilbert space. The

resolution is to define A−1 as above, in order to bring A back to the small Hilbert space.

This amounts to using the mapping (3.8).
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